Abstract

Grape is qualitatively and quantitatively very rich in polyphenols. In particular, anthocyanins, flavonols and stilbene derivatives play very important roles in plant metabolism, thanks to their peculiar characteristics. Anthocyanins are responsible for the color of red grapes and wines and confer organoleptic characteristics on the wine. They are used for chemotaxonomic studies and to evaluate the polyphenolic ripening stage of grape. They are natural colorants, have antioxidant, antimicrobial and anticarcinogenic activity, exert protective effects on the human cardiovascular system, and are used in the food and pharmaceutical industries. Stilbenes are vine phytoalexins present in grape berries and associated with the beneficial effects of drinking wine. The principal stilbene, resveratrol, is characterized by anticancer, antioxidant, anti-inflammatory and cardioprotective activity. Resveratrol dimers and oligomers also occur in grape, and are synthetized by the vine as active defenses against exogenous attack, or produced by extracellular enzymes released from pathogens in an attempt to eliminate undesirable toxic compounds. Flavonols are a ubiquitous class of flavonoids with photo-protection and copigmentation (together with anthocyanins) functions. The lack of expression of the enzyme flavonoid 3′,5′-hydroxylase in white grapes restricts the presence of these compounds to quercetin, kaempferol and isorhamnetin derivatives, whereas red grapes usually also contain myricetin, laricitrin and syringetin derivatives. In the last ten years, the technological development of analytical instrumentation, particularly mass spectrometry, has led to great improvements and further knowledge of the chemistry of these compounds. In this review, the biosynthesis and biological role of these grape polyphenols are briefly introduced, together with the latest knowledge of their chemistry.

Highlights

  • Grape contains a great number of classes of secondary metabolites: in particular, the composition of polyphenols is qualitatively and quantitatively very rich

  • Due to their biological and organoleptic characteristics, anthocyanins, flavonols and stilbenes play a key role in wine quality, and grape extracts are used as sources of natural compounds in the pharmaceutical, food and nutraceutical industries [2]

  • Biosynthesis of anthocyanin can be influenced by exogenous elicitors and different chemical compounds have been tested to increase their content in grape berries

Read more

Summary

Introduction

Grape contains a great number of classes of secondary metabolites: in particular, the composition of polyphenols is qualitatively and quantitatively very rich. The main polyphenols are anthocyanin, flavonol and stilbene derivatives, three classes of compounds displaying peculiar characteristics and which play important roles in plant metabolism [1]. Berry phenolics contribute to wine quality and have beneficial effects on many aspects of human health. Due to their biological and organoleptic characteristics, anthocyanins, flavonols and stilbenes play a key role in wine quality, and grape extracts are used as sources of natural compounds in the pharmaceutical, food and nutraceutical industries [2]. The biosynthesis and biological role of these classes of polyphenols in grape are briefly introduced, together with the latest knowledge on their chemistry

Flavonoids
Anthocyanins and Flavonols
Stilbene Derivatives
Effects of Agrochemicals and Plant Activators on Grape Polyphenols
Chemistry and Proprieties of Anthocyanins
Chemistry and Proprieties of Stilbene Derivatives
Chemistry and Proprieties of Flavonols
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call