Abstract

Alzheimer’s disease is a common type of neurodegenerative condition characterized by progressive neural deterioration. The anatomical changes associated with individuals affected by Alzheimer’s disease include the loss of tissue in various areas of the brain. Magnetic Resonance Imaging (MRI) is commonly used as a noninvasive tool to assess the neural structure of the brain for diagnosing Alzheimer’s disease. In this study, an integrated Improved Fuzzy C-means method with improved watershed segmentation was employed to segment the brain tissue components affected by this disease. These segmented features were fed into a hybrid technique for classification. Specifically, a hybrid Convolutional Neural Network–Long Short-Term Memory classifier with 14 layers was developed in this study. The evaluation results revealed that the proposed method achieved an accuracy of 98.13% in classifying segmented brain images according to different disease severities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call