Abstract
The teaching laboratory remains an important environment for developing undergraduate chemists, but the inherent diversity of inorganic chemistry results in less standardised undergraduate curricula than other sub-disciplines. This study surveys the content of advanced (third-year) inorganic chemistry across Australia and reviews experimental materials from 15 universities that offer inorganic laboratory programmes at this level. All institutions offer at least one traditional inorganic experiment, the most common being the preparation and acetylation of ferrocene, spectroscopy and magnetochemistry of nickel coordination compounds and palladium-catalysed cross-couplings. These inorganic classics are complemented by a breadth of non-traditional offerings that often align with institutional research strengths. Academic unit coordinators were also surveyed and their responses interpreted using ASELL (Advancing Science and Engineering through Laboratory Learning) tools. Advanced inorganic laboratory programmes were found to develop students’ practical and transferrable skills. Students generally receive guidance from teaching staff in all aspects of experimental work, including planning, development, analysis and communicating conclusions. Academic unit coordinators identified potential improvements that included diversifying student activities in the lab and how they are being assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.