Abstract

Recent advances in multicolor flow cytometry have made possible the simultaneous analysis of up to 12 distinct cell surface molecules. This technical advance increases sensitivity and specificity for more accurate diagnosis and classification of various malignancies. In turn, this allows for a better assessment of disease prognosis and the establishment of a treatment regimen. In addition, multicolor flow cytometry provides a sensitive technique for investigating the occurrence of minimal residual disease. Studies of leukemias and lymphomas are particularly suitable for investigation by flow cytometry. Studies on solid tumors such as breast cancer, or on tumor infiltrating immune cells, are also possible if appropriate processing techniques are used to generate single-cell suspensions without altering cell surface receptor expression. In addition to analytical immunophenotyping, isolation of even very small (malignant) cell populations by multicolor flow cytometry provides a highly pure source for DNA and RNA analyses. Such combined sorting and molecular approaches provide a comprehensive basis for studying the molecular mechanisms underlying malignant transformation. Importantly, they also enable distinct diagnoses to be made when cell surface marker immunophenotyping alone is inconclusive. To exemplify the importance of combining various immunophenotyping tools, such as multicolor flow cytometry and gene expression analyses, with the classical tools of histopathology and differential blood count, we provide data on the analysis of a mouse model of human chronic B-cell leukemia (B-CLL): the New Zealand Black mouse. We relied for this study on gene expression databases generated by the National Cancer Institute for various human B-cell malignancies. B-CLL is one of the most common forms of leukemia in the Western world. No therapies currently exist against this usually slow-progressing but always fatal malignancy, making the development of a good animal model an important task. The data show that although the New Zealand Black mouse shows a spontaneous expansion of a CD5+ B-cell population (a hallmark of human B-CLL), it does not fit the classification of B-CLL by either phenotypic or genetic analysis criteria. In conclusion, increasing the number of simultaneous measurements for immunophenotyping and cell sorting by flow cytometry and combining it with comprehensive gene expression studies supports and expands the power of classical analysis tools.

Highlights

  • The remarkable generation of scores of increasingly sophisticated mouse models of mammary cancer over the past two decades has provided tremendous insights into molecular derangements that can lead to cancer

  • We report that somatic mutations of p53 in mouse mammary epithelial cells lead to ERα-positive and ERαnegative tumors. p53 inactivation in pre-pubertal/pubertal mice, but not in adult mice, leads to the development of ERα-positive tumors, suggesting that developmental stages influence the availability of ERα-positive tumor origin cells

  • Genetic alterations commonly observed in human breast cancer including c-myc amplification and Her2/Neu/erbB2 activation were seen in these mouse tumors

Read more

Summary

Mouse models of human breast cancer: evolution or convolution?

Transgenic Oncogenesis Group, Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland, USA. The remarkable generation of scores of increasingly sophisticated mouse models of mammary cancer over the past two decades has provided tremendous insights into molecular derangements that can lead to cancer. The relationships of these models to human breast cancer, remain problematic. P53 inactivation in pre-pubertal/pubertal mice, but not in adult mice, leads to the development of ERα-positive tumors, suggesting that developmental stages influence the availability of ERα-positive tumor origin cells. These tumors have a high rate of metastasis that is independent of tumor latency. Since it is feasible to isolate ERα-positive epithelial cells from normal mammary glands and tumors, molecular mechanisms underlying ERα-positive and ERα-negative mammary carcinogenesis can be systematically addressed using this model

Mouse models for BRCA1-associated breast cancer
Genetic manipulation of the mammary gland by transplantation
The Mutant Mouse Regional Resource Center Program
11 Mammary pathology of the genetically engineered mouse
D Dugger
15 Role of animal models in oncology drug discovery
18 Clinical breast cancer and estrogen
19 Pregnancy levels of estrogen prevents breast cancer
21 The ErbB receptor tyrosine kinases and their roles in cancer
22 Predicting breast cancer behavior by microarray analysis
24 The comparative genetics and genomics of cancer: of mice and men
23 The molecular biology of mammary intraepithelial neoplasia outgrowths
28 Transgenic models are predictive: the herceptin and flavopiridol experience
31 Role of differentiation in carcinogenesis and cancer prevention
30 Genetically engineered mouse models of human breast cancer
34 Hormonal interactions during mammary gland development
35 Function of LEF1 in early mammary development
40 Imaging mouse models of breast cancer with positron emission tomography
42 Ultrasound imaging of tumor perfusion
D Medina
47 In situ to invasive carcinoma transition: escape or release
48 Regulation of human mammary stem cells
50 Stem cells in normal breast development and breast cancer
McKenzie
57 Genomic approaches to drug target discovery using mouse models
58 Target discovery in the postgenomic era
60 From gene expression patterns to antibody diagnostics
Findings
A Korman

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.