Abstract
Strong, tough and sustainable materials are in high demand in various engineering applications. We demonstrate a potential sustainable hybrid film made from natural cellulose and a biobased slurry. Through a simple and scalable approach, cellulose can be processed into an advanced material with over 2.8 and 9.2-fold increase in dry strength and toughness after curing and a 728-fold increase in wet strength, respectively. In addition, these hybrid composite films display an outstanding antioxidant activity surpassing 90 %, along with excellent ultraviolet radiation shielding and thermal insulation properties. Further, the hybrid films can be fabricated by integrating all-natural materials and still guarantee their unique functionality. We also demonstrate the feasibility of a circular bioeconomy by recycling the hybrid film using a green, deep eutectic solvent to fabricate a recycled hybrid film that displays excellent mechanical and optical properties. When recycling is unsuitable or economical, the hybrid film can naturally degrade in the soil under 6 months. These encouraging findings suggest the promise of cellulose hybrid films as a renewable, low-cost, tough, and strong material with the potential to replace nonrenewable synthetic plastics and products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.