Abstract
Hybrid metaheuristic algorithm (MA), an advanced tool in the artificial intelligence field, provides precise reference evapotranspiration (ETo) prediction that is highly important for water resource availability and hydrological studies. However, hybrid MAs are quite scarcely used to predict ETo in the existing literature. To this end, the prediction abilities of two support vector regression (SVR) models coupled with three types of MAs including particle swarm optimization (PSO), grey wolf optimization (GWO), and gravitational search algorithm (GSA) were studied and compared with single SVR and SVR-PSO in predicting monthly ETo using meteorological variables as inputs. Data obtained from Rajshahi, Bogra, and Rangpur stations in the humid region, northwestern Bangladesh, was used for this purpose as a case study. The prediction precision of the proposed models was trained and tested using nine input combinations and assessed using root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE). The tested results revealed that the SVR-PSOGWO model outperformed the other applied soft computing models in predicting ETo in all input combinations, followed by the SVR-PSOGSA, SVR-PSO, and SVR. It was found that SVR-PSOGWO decreases the RMSE of SVR, SVR-PSO, and SVR-PSOGSA by 23%, 27%, 14%, 21%, 19%, and 5% in Rangpur and Bogra stations during the testing stage. The RMSE of the SVR, SVR-PSO, and SVR-PSOGSA reduced by 32%, 20%, and 3%, respectively, employing the SVR-PSOGWO for the Rajshahi Station. The proposed hybrid machine learning model has been recommended as a potential tool for monthly ETo prediction in a humid region and similar climatic regions worldwide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.