Abstract
A fuzzy knowledge-based controller of hydraulic retention time (HRT) was designed and tested in an outdoor membrane photobioreactor (MPBR) to improve nitrogen recovery from a microalgae cultivation system, maintaining the algae as photosynthetically active as possible and limiting their competition with other microorganisms. The hourly flow of the MPBR system was optimised by adjusting the influent flow rate to the outdoor environmental conditions which microalgae were exposed to at any moment and to the nitrogen uptake capacity of the culture. A semi-empirical photosynthetically active radiation (PAR) prediction model was calibrated using total cloud cover (TCC) forecast. Dissolved oxygen, standardised to 25 °C (DO25), was used as an on-line indicator of microalgae photosynthetic activity. Different indexes, based on suspended solids (SS), DO25, and predicted and real PAR, were used as input variables, while the initial HRT of each operating day (HRT0) and the variation of HRT (ΔHRT) served as output variables. The nitrogen recovery efficiency, measured as nitrogen recovery rate (NRR) per nitrogen loading rate (NLR) in pseudo-steady state conditions, was improved by 45% when the HRT-controller was set in comparison to fixed 1.25-d HRT. Consequently, the average effluent total soluble nitrogen (TSN) concentration in the MPBR was reduced by 47%, accomplishing the discharge requirements of the EU Directive 91/271/EEC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.