Abstract

Accurately predicting the power conversion efficiency (PCE) in dye-sensitized solar cells (DSSCs) represents a crucial challenge, one that is pivotal for the high throughput rational design and screening of promising dye sensitizers. This study presents precise, predictive, and interpretable machine learning (ML) models specifically designed for Zn-porphyrin-sensitized solar cells. The model leverages theoretically computable, effective, and reusable molecular descriptors (MDs) to address this challenge. The models achieve excellent performance on a "blind test" of 17 newly designed cells, with a mean absolute error (MAE) of 1.02%. Notably, 10 dyes are predicted within a 1% error margin. These results validate the ML models and their importance in exploring uncharted chemical spaces of Zn-porphyrins. SHAP analysis identifies crucial MDs that align well with experimental observations, providing valuable chemical guidelines for the rational design of dyes in DSSCs. These predictive ML models enable efficient in silico screening, significantly reducing analysis time for photovoltaic cells. Promising Zn-porphyrin-based dyes with exceptional PCE are identified, facilitating high-throughput virtual screening. The prediction tool is publicly accessible at https://ai-meta.chem.ncu.edu.tw/dsc-meta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.