Abstract

Diabetes mellitus is a common endocrine disorder characterised by hyperglycaemia and predisposes to chronic complications affecting the eyes, blood vessels, nerves and kidneys. Hyperglycaemia has an important role in the pathogenesis of diabetic complications by increasing protein glycation and the gradual build-up of advanced glycation endproducts (AGEs) in body tissues. These AGE form on intra- and extracellular proteins, lipids, nucleic acids and possess complex structures that generate protein fluorescence and cross-linking. Protein glycation and AGE are accompanied by increased free radical activity that contributes towards the biomolecular damage in diabetes. There is considerable interest in receptors for AGEs (RAGE) found on many cell types, particularly those affected in diabetes. Recent studies suggest that interaction of AGEs with RAGE alter intracellular signalling, gene expression, release of pro-inflammatory molecules and free radicals that contribute towards the pathology of diabetic complications. This review introduces the chemistry of glycation and AGEs and examines the mechanisms by which they mediate their toxicity. The role of AGEs in the pathogenesis of retinopathy, cataract, atherosclerosis, neuropathy, nephropathy, diabetic embryopathy and impaired wound healing are considered. There is considerable interest in anti-glycation compounds because of their therapeutic potential. The mechanisms and sites of action of selected inhibitors, together with their potential in preventing diabetic complications are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call