Abstract

Advanced glycation end products (AGE) are substantially elevated in individuals with diabetes and/or chronic kidney disease (CKD). These patients are at greatly increased risk of cardiovascular events. The purpose of this study was to investigate the novel hypothesis that AGE elicit externalization of the platelet membrane phospholipid phosphatidylserine (PS). This contributes to hemostasis through propagation of the coagulation cascade leading to thrombus formation. Platelet-rich plasma (PRP) was prepared by differential centrifugation, and PS externalization was quantified by a fluorescence-activated cell sorter using annexin V-FITC. Human serum albumin (HSA)-AGE was generated by incubating HSA with glucose for 2, 4, or 6 wk, and total HSA-AGE was assessed by fluorescence intensity. The 2-wk HSA-AGE preparation (0-2 mg/ml) stimulated a concentration-dependent increase in PS externalization in a subpopulation of platelets that was threefold at 2 mg/ml. In contrast, the 4- and 6-wk preparations were maximal at 0.5 mg/ml and fivefold in magnitude. These effects mirrored the change in total HSA-AGE content of the preparations. The PS response was maximal at 10 min and inhibited by the PKC-delta inhibitor rottlerin and the serotonin [5-hydroxytryptamine (5-HT)](2A/2C) receptor antagonist ritanserin in a dose-dependent manner. Moreover, the 5-HT(2A/2C) receptor agonist 1,2,5-dimethoxy-4-iodophenyl-2-aminopropane mimicked the effect of HSA-AGE on PS externalization. These data demonstrate, for the first time, that HSA-AGE stimulates PS externalization in a subpopulation of platelets via the 5-HT(2A/2C) receptor. This may have important consequences for platelet involvement in inflammatory responses and the increased cardiovascular risk observed in individuals with diabetes and/or CKD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.