Abstract
Glucokinase, the enzyme that catalyses the conversion of glucose to G-6-P, plays a key role in glucose metabolism. AGEs are implicated in diabetic complications. A previous study reported that AGEs decreased β-cell function through inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. This study investigated the effects of AGEs on glucokinase and islet function. Six-month-old male C57BL6 mice were divided into bovine serum albumin (BSA) and AGE-BSA groups. BSA (200 µg/g) and AGE-BSA (60 U/g) were administered intraperitoneally twice daily. After 2 weeks, serum AGE levels were measured, oral glucose tolerance test was performed, and insulin levels during the oral glucose tolerance test were determined. Glucokinase protein expression level and activity were measured in pancreatic islets. We observed that the normal mice (C57/BL6) treated for 2 weeks with AGE-BSA showed impaired glucose tolerance and decrease in acute insulin release. Glucokinase activity in islets from the AGE-BSA-treated mice was significantly inhibited and accompanied by blunted response of islets to high glucose stimulation. Moreover, in vitro experiments showed that glucokinase protein expression was decreased, its activity was inhibited, and islet function was decreased. GKA partially restored glucokinase activity and islet function caused by AGEs. We concluded that AGEs inhibited glucokinase activity, leading to islet dysfunction in mouse pancreatic islets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.