Abstract

Modification of proteins by long-term incubation with glucose leads, through the formation of early products such as Schiff base and Amadori rearrangement products, to the formation of advanced glycation end products (AGE). AGE-modified proteins are characterized physicochemically by fluorescence, brown coloration, and intramolecular or intermolecular cross-linking. Biologically, they are specifically recognized by the AGE receptors of the cell surface membrane. Recent studies have provided evidence for the involvement of AGE proteins in atherosclerosis. First, in vitro experiments using Chinese hamster ovary cells overexpressing the macrophage scavenger receptor (MSR) and peritoneal macrophages from MSR-knockout mice demonstrated that MSR plays a major role as the AGE receptor in the endocytotic uptake of AGE by macrophages. Second, immunohistochemical studies using anti-AGE antibody and anti-MSR antibody revealed the presence of AGE proteins in human atherosclerotic lesions in arterial walls. Because MSR is closely associated with the formation of early atherosclerotic lesions, these results suggest a potential role played by AGE proteins or their interaction with MSR in the atherosclerotic process. (Trends Cardiovasc Med 1996;6:163–168).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call