Abstract
In exploration geochemistry, advances in the detection limit, breadth of elements analyze-able, accuracy and precision of analytical instruments have motivated the re-analysis of legacy samples to improve confidence in geochemical data and gain more insights into potentially mineralized areas. While a re-analysis campaign in a geochemical exploration program modernizes legacy geochemical data by providing more trustworthy and higher-dimensional geochemical data, especially where modern data is considerably different than legacy data, it is an expensive exercise. The risk associated with modernizing such legacy data lies within its uncertainty in return (e.g., the possibility of new discoveries, in primarily greenfield settings). Without any advanced knowledge of yet unanalyzed elements, the importance of re-analyses remains ambiguous. To address this uncertainty, we apply machine learning to multivariate geochemical data from different regions in Canada (i.e., the Churchill Province and the Trans-Hudson Orogen) in order to use legacy geochemical data to predict modern and higher dimensional multi-elemental concentrations ahead of planned re-analyses. Our study demonstrates that legacy and modern geochemical data can be repurposed to predict yet unanalyzed elements that will be realized from re-analyses and in a manner that significantly reduces the latency to downstream usage of modern geochemical data (e.g., prospectivity mapping). Findings from this study serve as a pillar of a framework for exploration geologists to predictively explore and prioritize potentially mineralized districts for further prospects in a timely manner before employing more invasive and expensive techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.