Abstract

The objective of this article is to provide a comparative analysis of two novel genetic programming (GP) techniques, differentiable Cartesian genetic programming for artificial neural networks (DCGPANN) and geometric semantic genetic programming (GSGP), with state-of-the-art automated machine learning (AutoML) tools, namely Auto-Keras, Auto-PyTorch and Auto-Sklearn. While all these techniques are compared to several baseline algorithms upon their introduction, research still lacks direct comparisons between them, especially of the GP approaches with state-of-the-art AutoML. This study intends to fill this gap in order to analyze the true potential of GP for AutoML. The performances of the different tools are assessed by applying them to 20 benchmark datasets of the imbalanced binary classification field, thus an area that is a frequent and challenging problem. The tools are compared across the four categories average performance, maximum performance, standard deviation within performance, and generalization ability, whereby the metrics F1-score, G-mean, and AUC are used for evaluation. The analysis finds that the GP techniques, while unable to completely outperform state-of-the-art AutoML, are indeed already a very competitive alternative. Therefore, these advanced GP tools prove that they are able to provide a new and promising approach for practitioners developing machine learning (ML) models. Doi: 10.28991/ESJ-2023-07-04-021 Full Text: PDF

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.