Abstract

For decades, seedling peaches have been used as the standard rootstock in California almond orchards. Vigorous, deep rooted trees are needed in almond orchards for maximum yields and to withstand the annual tree-shaking at harvest. Currently, researchers are actively evaluating rootstocks for almonds in field trials and in various screening protocols. In this study, seedling rootstocks, obtained from male-sterile advanced generation peach-almond (PEAL) hybrid mother trees, were compared with ‘Nemaguard’ peach seedlings for emergence in the nursery row, trunk caliper at propagation time, and end of season dormant above ground tree weight. Seedling emergence was affected significantly (P ≤ 0.05) by seed source, as was trunk caliper and end of season dormant above ground tree weight. Trunk caliper and dormant above ground tree weight were also affected significantly (P ≤ 0.05) by planting year. Results obtained in this study demonstrate the enhanced first year growth from seedlings of advanced generation PEAL hybrids, as compared to ‘Nemaguard’ seedlings. Seedling emergence in the rootstock bed was not affected significantly by planting year. Advanced generation PEAL hybrid seedlings were ready for June-budding at an earlier date compared to ‘Nemaguard’ seedlings, providing the potential for larger-sized finished nursery stock by the end of the growing season. Due to the male-sterile status of the advanced generation PEAL mother trees, bloom periods of several root-knot nematode resistant rootstock cultivars were examined for their degree of synchronicity with the mother trees. The examined rootstocks and mother trees varied in both chill hour and post-chill heat requirements necessary to effect bloom. ‘Flordaguard’ peach rootstock began bloom in advance of the male-sterile mother trees, whereas the bloom period of ‘Tsukuba No. 4’ occurred well after, suggesting they would not be effective synchronous pollenizers for consistent hybrid seed production. Based on more limited flowering period data, better bloom synchronicity was achieved with a Tsukuba No. 4 X Flordaguard hybrid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call