Abstract

This paper is concerned with the design of gain-scheduled controllers for uncertain linear parameter-varying systems. Two alternative design techniques for constructing such controllers are discussed. Both techniques are amenable to linear matrix inequality problems via a gridding of the parameter space and a selection of basis functions. These problems are then readily solvable using available tools in convex semidefinite programming. When used together, these techniques provide complementary advantages of reduced computational burden and ease of controller implementation. The problem of synthesis for robust performance is then addressed by a new scaling approach for gain-scheduled control. The validity of the theoretical results are demonstrated through a two-link flexible manipulator design example. This is a challenging problem that requires scheduling of the controller in the manipulator geometry and robustness in face of uncertainty in the high-frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.