Abstract
SummaryA conservatism-reduced design of a gain scheduled output feedbackH∞controller for ann-joint rigid robotic manipulator, which integrates the varying-parameter rate without their feedback, is proposed. The robotic system is reduced to a 1inear parameter varying (LPV) form, which depends on the varying-parameter. By using a parameter-dependent Lyapunov function, the design of a controller, which satisfies the closed-loopH∞performance, is reduced to a solution of the parameterized linear matrix inequalities (LMIs) of parameter matrices. With a use of the concept of “multi-convexity”, the solution of the infinite LMIs in the varying-parameter and its rate space is reduced to a solution of the finite LMIs for the vertex set. The proposed controller eliminates the feedback of the varying-parameter rate and fixes its upper boundary so that the conservatism of the controller design is reduced. Experimental results verify the effectiveness of the proposed design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.