Abstract

This study employs the finite element (FE) method to analyze the Incremental Sheet Forming (ISF) process of Ti-6Al-4V titanium alloy. The numerical modeling of pressure-assisted warm forming of Ti-6Al-4V sheets with combined oil-heating and friction stir rotation-assisted heating of the workpiece is presented in this article. The thermo-mechanical FE-based numerical model took into account the characteristics of the mechanical properties of the sheet along with the temperature. The experimental conditions were replicated in FEM simulations conducted in Abaqus/Explicit, which incorporated boundary conditions and evaluated various mesh sizes for enhanced accuracy and efficiency. The simulation outcomes were compared with actual experimental results to validate the FE-based model’s predictive capacity. The maximum temperature of the tool measured using infrared camera was approximately 326 °C. Different mesh sizes were considered. The results of FEM modeling were experimentally validated based on axial forming force and thickness distribution measured using the ARGUS optical measuring system for non-contact acquisition of deformations. The greatest agreement between FEM results and the experimental result of the axial component of forming force was obtained for finite elements with a size of 1 mm. The maximum values of the axial component of forming force determined experimentally and numerically differ by approximately 8%. The variations of the forming force components and thickness distribution predicted by FEM are in good agreement with experimental measurements. The numerical model overestimated the wall thickness with an error of approximately 5%. By focusing on the heating techniques applied to Ti-6Al-4V titanium alloy sheet, this comparative analysis underlines the adaptability and precision of numerical analysis applied in modeling advanced manufacturing processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.