Abstract
Understanding factors which control the long-term survival and activity of Fe(III)-reducing bacteria (FeRB) in subsurface sedimentary environments is important for predicting the ability of these organisms to serve as agents for bioremediation of organic and inorganic contaminants. This project seeks to refine our quantitative understanding of microbiological and geochemical controls on bacterial Fe(III) oxide reduction and growth of FeRB, using laboratory reactor systems which mimic to varying degrees the physical and chemical conditions of subsurface sedimentary environments. Methods for studying microbial Fe(III) oxide reduction and FeRB growth in experimental systems which incorporate advective aqueous phase flux are being developed for this purpose. These methodologies, together with an accumulating database on the kinetics of Fe(III) reduction and bacterial growth with various synthetic and natural Fe(III) oxide minerals, will be applicable to experimental and modeling studies of subsurface contaminant transformations directly coupled to or influenced by bacterial Fe(III) oxide reduction activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.