Abstract

Exergy analysis and advanced exergy analysis of an absorption chiller/Kalina cycle integrated system are conducted in this research. The exergy destruction of each component and overall exergy efficiency of the cascade process have been obtained. Advanced exergy analysis investigates the interactions among different components and the actual improvement potential. Results show that among all the equipment, the largest exergy destruction is in the generators and absorber. System exergy efficiency is obtained as 35.52%. Advanced analysis results show that the endogenous exergy destruction is dominant in each component. Interconnections among different components are not significant but very complicated. It is suggested that the improvement priority should be given to the turbine. Performance improvement of this low-grade waste heat recovery process is still necessary because around 1/4 of the total exergy destruction can be avoided. Exergy and advanced exergy analysis in this work locates the position of exergy destruction, quantifies the process irreversibility, presents the component interactions and finds out the system improvement potential. This research provides detailed and useful information about this absorption chiller/Kalina cycle integrated system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call