Abstract

Splitting the exergy destruction into endogenous/exogenous and unavoidable/avoidable parts has many advantages for the detailed analysis of energy conversion systems. Endogenous is the exergy destruction obtained when all other system components are ideal and the component being considered operates with its real efficiency. The difference between total and endogenous exergy destruction is the exogenous exergy destruction caused within the component being considered by the irreversibilities in the remaining components and the structure of the overall system. Unavoidable is the part of exergy destruction within one system component that cannot be eliminated even if the best available technology in the near future would be applied. The avoidable exergy destruction is the difference between total and unavoidable exergy destruction. These concepts enhance an exergy analysis and assist in improving the quality of the conclusions obtained from this analysis. The paper presents the combined application of both concepts to vapor-compression refrigeration machines using different one-component working fluids (R125, R134a, R22 and R717) as well as azeotropic (R500) and zeotropic (R407C) mixtures. The purpose of the paper is not to evaluate these working fluids, some of which cannot be used in future, but to demonstrate the effect of different material properties on the results of advanced exergy analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.