Abstract

Evaluation of the long-term stability of electrocatalysts is typically performed using galvanostatic polarization at a predefined current density. A stable or insignificant increase in the applied potential is usually interpreted as high long-term stability of the tested catalyst. However, effects such as (i) electrochemical degradation of a catalyst due to its oxidation, (ii) blocking of the catalyst surface by evolved gas bubbles, and (iii) detachment of the catalyst from the electrode surface may lead to a decrease of the catalyst's active surface area being exposed to the electrolyte. In order to separate these effects and to evaluate the true electrochemical degradation of electrocatalysts, an advanced evaluation protocol based on subsequently performed electrochemical impedance, double layer capacitance, cyclic voltammetry, and galvanostatic polarization measurements was developed and used to evaluate the degradation of IrO2 particles drop-coated on glassy carbon rotating disk electrode using Nafion as a binder. A flow-through electrochemical cell was developed enabling circulation of the electrolyte leading to an efficient removal of evolved oxygen bubbles even at high current densities of up to 250 mA/cm(2). The degradation rate of IrO2 was evaluated over 225 test cycles (0.733 ± 0.022 mV/h) with a total duration of galvanostatic polarization measurements of over 55 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.