Abstract

There is a wide variety of protocols for enzyme immobilization, allowing for the reuse of the enzyme, integration in flow bioreactors, and easy separation from the final product. However, none of them have reached a generalized implementation and new immobilization technologies are continuously being developed to improve the properties of the immobilized biocatalysts. In this chapter, we describe three advanced strategies looking at the key points of enzyme immobilization: the sustainability of the support, the recovered activity of the immobilized enzyme, and the reuse of the cofactors. Lignin is presented as a suitable and versatile support for enzyme immobilization, offering a more cost-effective and biodegradable strategy. A cationic polymer is used during the enzyme immobilization procedure to prevent the subunit dissociation of multimeric enzymes as well as to avoid excessive rigidification of the covalently immobilized enzyme. Finally, the reversible co-immobilization of cofactors has been improved by increasing the reactive groups of the support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.