Abstract

Recent advances in the physical vapor deposition (PVD) of protective fluoride films have raised the far-ultraviolet (FUV: 912-1600 {\AA}) reflectivity of aluminum-based mirrors closer to the theoretical limit. The greatest gains, at more than 20%, have come for lithium fluoride-protected aluminum, which has the shortest wavelength cutoff of any conventional overcoat. Despite the success of the NASA FUSE mission, the use of lithium fluoride (LiF)-based optics is rare, as LiF is hygroscopic and requires handling procedures that can drive risk. With NASA now studying two large mission concepts for astronomy, Large UV-Optical-IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HabEx), which mandate throughput down to 1000 {\AA}, the development of LiF-based coatings becomes crucial. This paper discusses steps that are being taken to qualify these new enhanced LiF-protected aluminum (eLiF) mirror coatings for flight. In addition to quantifying the hygroscopic degradation, we have developed a new method of protecting eLiF with an ultrathin (10-20 {\AA}) capping layer of a non-hygroscopic material to increase durability. We report on the performance of eLiF-based optics and assess the steps that need to be taken to qualify such coatings for LUVOIR, HabEx, and other FUV-sensitive space missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.