Abstract

Herein praseodymium-deficient Pr1.90−xCe0.1CuO4 oxides are evaluated as potential oxygen electrodes for solid oxide fuel cells (SOFCs). Introducing Pr-deficiency promotes the oxygen vacancy concentration, further improving electrocatalytic activity of the Pr1.90−xCe0.1CuO4 electrodes towards oxygen reduction reaction (ORR). The Pr1.75Ce0·.1CuO4 (P1·75CC) component exhibits outstanding electrode performance, as supported by a polarization resistance as low as 0.025 Ω cm2 and high peak power density of the single cell (1.11 W cm−2) at 700 °C. In addition, the rate-limiting steps for ORR kinetics are determined to be the charge transfer reaction and oxygen adsorption/diffusion process on the electrode surface. This work highlights an effective way for developing the cathode candidates with high electrocatalytic activity and superior stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call