Abstract

The cell membrane is a complex mixture of lipids, proteins, and other components. By forming dynamic lipid domains, different membrane molecules can selectively interact with each other to control cell signaling. Herein, we report several new types of lipid-DNA conjugates, termed as "DNA zippers", which can be used to measure cell membrane dynamic interactions and the formation of lipid domains. Dependent on the choice of lipid moieties, cholesterol- and sphingomyelin-conjugated DNA zippers specifically locate in and detect membrane lipid-ordered domains, while in contrast, a tocopherol-DNA zipper can be applied for the selective imaging of lipid-disordered phases. These versatile and programmable probes can be further engineered into membrane competition assays to simultaneously detect multiple types of membrane dynamic interactions. These DNA zipper probes can be broadly used to study the correlation between lipid domains and various cellular processes, such as the epithelial-mesenchymal transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.