Abstract

Cities and buildings represent the core of human life, the nexus of economic activity, culture, and growth. Although cities cover less than 10% of the global land area, they are notorious for their substantial energy consumption and consequential carbon dioxide (CO2) emissions. These emissions significantly contribute to reducing the carbon budget available to mitigate the adverse impacts of climate change. In this context, the designers’ role is crucial to the technical and social response to climate change, and providing a new generation of tools and instruments is paramount to guide their decisions towards sustainable buildings and cities. In this regard, data-informed digital tools are a viable solution. These tools efficiently utilise available resources to estimate the energy consumption in buildings, thereby facilitating the formulation of effective urban policies and design optimisation. Furthermore, these data-driven digital tools enhance the application of algorithms across the building industry, empowering designers to make informed decisions, particularly in the early stages of design. This paper presents a comprehensive literature review on artificial intelligence-based tools that support performance-driven design. An exhaustive keyword-driven exploration across diverse bibliographic databases yielded a consolidated dataset used for automated analysis for discerning the prevalent themes, correlations, and structural nuances within the body of literature. The primary findings indicate an increasing emphasis on master plans and neighbourhood-scale simulations. However, it is observed that there is a lack of a streamlined framework integrating these data-driven tools into the design process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.