Abstract
This research addresses the respiratory distress syndrome (RDS) in preterm newborns caused by insufficient surfactant synthesis, which can lead to serious complications, including pneumothorax, pulmonary hypertension, and pulmonary hemorrhage, increasing the risk of a fatal outcome. By analyzing chest radiographs and blood gases, we specifically focus on the significant contributions of these parameters to the diagnosis and analysis of the recovery of patients with RDS. The study involved 32 preterm newborns, and the analysis of gas parameters before and after the administration of surfactants and inhalation corticosteroid therapy revealed statistically significant changes in values of parameters such as FiO2, pH, pCO2, HCO3, and BE (Sig. < 0.05), while the pO2 parameter showed a potential change (Sig. = 0.061). Parallel to this, the research emphasizes the development of a lung segmentation algorithm implemented in the MATLAB programming environment. The key steps of the algorithm include preprocessing, segmentation, and visualization for a more detailed understanding of the recovery dynamics after RDS. These algorithms have achieved promising results, with a global accuracy of 0.93 ± 0.06, precision of 0.81 ± 0.16, and an F-score of 0.82 ± 0.14. These results highlight the potential application of algorithms in the analysis and monitoring of recovery in newborns with RDS, also underscoring the need for further development of software solutions in medicine, particularly in neonatology, to enhance the diagnosis and treatment of preterm newborns with respiratory distress syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.