Abstract

In this paper, we assess an innovative concept of emulating biological neurons with oscillators to implement an oscillatory neural network (ONN) with beyond-CMOS devices based on vanadium dioxide (VO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ). ONNs can be of interest as an ultra-low-power neuromorphic architecture capable of performing associative memory tasks, such as pattern recognition in IoT edge devices. To explore the benefits and costs of beyond-CMOS ONNs necessitates modeling, simulation, and design methods spanning from materials (e.g., atomistic methods) to devices (e.g., technology-computer-aided-design, TCAD) up to circuits (e.g., mixed-mode simulation, compact modeling). In this work, we report on the development of such an advanced design toolbox and the results on performance and features of beyond-CMOS ONNs. The proposed design toolbox allows exploring ONN scalability, accuracy, energy, and performance for pattern recognition applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.