Abstract

This study proposes a novel approach that utilizes Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) to tackle a critical challenge: detecting defects in wrapped film products. With their delicate and reflective film wound around a core material, these products present formidable hurdles for conventional visual inspection systems. The complex task of identifying defects, such as unwound or protruding areas, remains a daunting endeavor. Despite the power of commercial image recognition systems, they struggle to capture anomalies within wrap film products. Our research methodology achieved a 90% defect detection accuracy, establishing its practical significance compared with existing methods. We introduce a pioneering methodology centered on covariance vectors extracted from latent variables, a product of a Variational Autoencoder (VAE). These covariance vectors serve as feature vectors for training a specialized One-Class SVM (OCSVM), a key component of our approach. Unlike conventional practices, our OCSVM does not require images containing defects for training; it uses defect-free images, thus circumventing the challenge of acquiring sufficient defect samples. We compare our methodology against feature vectors derived from the fully connected layers of established CNN models, AlexNet and VGG19, offering a comprehensive benchmarking perspective. Our research represents a significant advancement in defect detection technology. By harnessing the latent variable covariance vectors from a VAE encoder, our approach provides a unique solution to the challenges faced by commercial image recognition systems. These advancements in our study have the potential to revolutionize quality control mechanisms within manufacturing industries, offering a brighter future for product integrity and customer satisfaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.