Abstract
Transition-metal chalcogenides (TMCs) have attracted numerous interests in the field of energy storage owing to their exceptional electrical conductivity, ultrahigh specific capacity, etc. Herein, with inspiration from the attractive nanostructures of hierarchical frameworks with interconnected networks, we endeavored to design ternary copper cobalt selenide (CuxCo1–xSe2) nanostructures through a facile and cost-effective hydrothermal and followed by selenization process. The effects of Cu2+ is investigated and shows significant enhancement in the electrochemical performances. The optimal Cu0.5Co0.5Se2 nanosheets (NSs) possess hierarchical architectures, large specific surface area, unique porous networks, and excellent intrinsic conductivity that result in superior electrochemical properties by their excellent synergistic effects. Taking advantage of the merits of the rational nanostructures, the Cu0.5Co0.5Se2 NSs significantly boost the capacitive performances as ultrahigh specific capacitance of ~1695 F g−1 at a current density of 1 A g−1, and long-term cycling stability (~94.9%). An asymmetric supercapacitor (ASC) device is fabricated using the Cu0.5Co0.5Se2 NSs as a positive electrode, and multilayered MXene (Ti3C2) as a negative electrode. Remarkably, the ASC operates at a working potential of 1.6 V and delivers a high energy density (~84.17 Wh kg−1 at 0.604 kW kg−1), high power density (~14.95 kW kg−1 at 57.73 Wh kg−1), and exceptional cycling stability (~91.1% after 10,000 charge–discharge cycles). The energy-storage properties are superior to recently reported TMCs-based ASC, proposing that the Cu0.5Co0.5Se2//MXene ASC has massive potential for next-generation energy-storage systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.