Abstract

A tin-modified copper foam for the efficient and selective reduction of CO2 to CO is reported. We employ a cost-efficient electrodeposition route to form a three-dimensional porous dendrite architecture, in which each dendrite possesses a copper core and a copper oxide/tin oxide shell. The sparse tin species on the electrode surface play a key role to achieve excellent faradaic efficiencies for CO formation with a maximum value of 94%. We demonstrate high CO partial current densities of 4.7 mA cm−2 and 7.9 mA cm−2 at applied potentials of -0.8 V and -1.1 V vs. the reversible hydrogen electrode, respectively. The high activity for electrochemical CO2 reduction is attributed to the unique hierarchical porous structure, which offers abundant electrochemically active sites and facilitates mass transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.