Abstract

The quantitative characterization of crack tip loads is fundamental in fracture mechanics. Although the potential influence of higher order terms on crack growth and stability is known, classical studies solely rely on first order stress intensity factors. We calculate higher order Williams coefficients using an integral technique based on conjugate work integrals and study the convergence with increasing crack tip distance. We compare the integral method to the state-of-the-art fitting method and provide results for higher-order terms with several crack lengths, external forces, and sizes for widely used middle tension, single-edge cracked tension, and compact tension specimen under mode-I loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.