Abstract

We explore here, through reactive force field (ReaxFF) molecular dynamics simulations, oleic acid upgrading on beta zeolite (BEA) regulated with nine silica-to-aluminium ratios (SARs) to investigate their acid-catalyzed deoxygenation and coking susceptibility. The selected computational descriptors involved conversion, hydrodeoxygenation, and decarboxylation/decarbonylation selectivity, biofuels yield, and coke deposition characteristics. Simulations were validated by 20.3 SAR available experimental data and used for the systematic study. High deoxygenation selectivity was found to be related to the structural sensitivity of BEA(100) on the upgrading mechanism. ReaxFF simulations revealed that altering the Al-substitution could greatly promote biofuel formation. Specifically, SARs towards the mid-region (SAR 47) favored gasoline production, while 31 SAR exploited diesel-like hydrocarbons. An optimum ratio of 37.4 SAR achieved maximum oleic acid conversion (69.8%), with high yields of gasoline and diesel fuels (15.6 and 20.4 wt%, respectively) and moderate coking (8.6 wt%). Density functional theory screening of metallic dopants allowed investigating of their deoxygenation and coke susceptibility, obtaining that Cu-BEA structure favored the optimal carbon and O-moiety adsorption (-3.89 and -1.8 eV, respectively). Furthermore, the economic and environmental analysis showed that Cu-dopped BEA displayed the lowest market price and global warming potential (71 USD/kg and 2.8 kg CO2-eq/kg).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.