Abstract

In this note the issue of fluid flow computation in a Discrete Fracture-Matrix (DFM) model is addressed. In such a model, a network of percolative fractures delimits porous matrix blocks. Two frameworks are proposed for the coupling between the two media. First, a FEM–BEM technique is considered, in which finite elements on non-conforming grids are used on the fractures, whereas a boundary element method is used on the blocks; the coupling is pursued by a PDE-constrained optimization formulation of the problem. Second, a VEM–VEM technique is considered, in which a 2D and a 3D virtual element method are used on the fractures and on the blocks, respectively, taking advantage of the flexibility of VEM in using arbitrary meshes in order to ease the meshing process and the consequent enforcement of the matching conditions on fractures and blocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call