Abstract

The emergence of additive manufacturing technologies has brought about a significant transformation in several industries. Among these technologies, Fused Deposition Modeling/Fused Filament Fabrication (FDM/FFF) 3D printing has gained prominence as a rapid prototyping and small-scale production technique. The potential of FDM/FFF for applications that require improved mechanical, thermal, and electrical properties has been restricted due to the limited range of materials that are suitable for this process. This study explores the integration of various reinforcements, including carbon fibers, glass fibers, and nanoparticles, into the polymer matrix of FDM/FFF filaments. The utilization of advanced materials for reinforcing the filaments has led to the enhancement in mechanical strength, stiffness, and toughness of the 3D-printed parts in comparison to their pure polymer counterparts. Furthermore, the incorporation of fillers facilitates improved thermal conductivity, electrical conductivity, and flame retardancy, thereby broadening the scope of potential applications for FDM/FFF 3D-printed components. Additionally, the article underscores the difficulties linked with the utilization of filled filaments in FDM/FFF 3D printing, including but not limited to filament extrusion stability, nozzle clogging, and interfacial adhesion between the reinforcement and matrix. Ultimately, a variety of pragmatic implementations are showcased, wherein filled filaments have exhibited noteworthy benefits in comparison to standard FDM/FFF raw materials. The aforementioned applications encompass a wide range of industries, such as aerospace, automotive, medical, electronics, and tooling. The article explores the possibility of future progress and the incorporation of innovative reinforcement materials. It presents a plan for the ongoing growth and application of advanced composite materials in FDM/FFF 3D printing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.