Abstract
A chemical stability map is advanced by incorporating ion complexation, solubility, and chemical trajectories to predict ZnO, Zn(OH)2, ZnCO3, ZnCl2, Zn5(CO3)2(OH)6, and Zn5(OH)8Cl2·H2O precipitation as a function of the total Zn content and pH of an NaCl solution. These calculations demonstrate equilibrium stability of solid Zn products often not considered while tracking the consumed and produced aqueous Zn ion species concentrations through chemical trajectories. The effect of Cl-based ligand formation is incorporated into these stability predictions, enabling enhanced appreciation for the local corrosion conditions experienced at the Zn surface in chloride-containing environments. Additionally, the complexation of Cl− with Zn2+ is demonstrated to compete with the formation of solid phases, making precipitation more difficult. The present work also extends the chemical stability diagram derivations by incorporating a Gibbs–Thompson curvature relation to predict the effect of nanoscale precipitate phase formation on species solubility. These thermodynamic predictions correlate well with experimental results for Zn corrosion in full and alternate NaCl immersion, and have far-reaching utility in a variety of fields requiring nanoscale, semiconductor, and/or structural materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.