Abstract

The goals of the study are (1) to use X-ray absorption near-edge spectroscopy (XANES) to determine forms of chlorine (inorganic, ionic, and organic) and forms of organic sulfur (organic sulfide and thiophenic sulfur) in as-shipped coals from Illinois mines, (2) to obtain basic data on chlorine removal via froth flotation at fine ({minus}200 mesh) and ultrafine ({minus}400 mesh) particle sizes, and (3) to evaluate XANES for direct assessment of the organic/inorganic affinities of trace elements. This is a cooperative effort among the Illinois State Geological Survey, the University of Kentucky, and Western Kentucky University. In this quarter, chlorine leachability during fine wet grinding of 21 coal samples was examined. The results show a general improvement in chlorine removal by grinding coals to {minus}200 mesh, but do not show further improvement by additional grinding to {minus}400 mesh. The chlorine and sulfur spectra of five coals , each from a distinct geographic location in Illinois, were examined. The chlorine XANES spectra for the five coals are similar and chloride anion was determined to be the predominant form of chlorine. The sulfur XANES data for the same coals show that a majority (61% to 82%) of organic sulfur in the coals is contributed from thiophenic sulfur. The distribution of organic sulfur shows that the high sulfur coals tend to have more organic sulfide than low sulfur coals. A more detailed interpretation may be possible after a complete analysis of all the samples selected. Evaluating the possibility of XANES for direct assessment of the organic/inorganic affinities of trace elements in an Illinois coal was completed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.