Abstract

Improved electrolyzer components are needed to make alkaline water electrolyzers more flexible and durable. The performance of these new components can be assessed through in situ electrochemical characterization in the form of polarization curves and electrochemical impedance spectroscopy (EIS). Presently, EIS is still mostly used for the IR-correction of the polarization curve, but more valuable information can be extracted. In this work we show how EIS data can be used to determine the dependence of ohmic resistance on current density, to derive anodic and cathodic Tafel slopes and exchange current densities from fitted charge transfer resistances and to derive anodic and cathodic capacitances from fitted constant phase elements. We do this for both a two electrode alkaline electrolysis flow cell setup as well as for a three electrode beaker type setup with 2D nickel electrodes. The presented tools can be used in performance studies of new and existing electrodes and membranes in alkaline water electrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.