Abstract

The transition to a hydrogen-based economy is significantly hindered by the challenge of efficient and safe hydrogen storage. This comprehensive review critically examines the frontier of carbon-based materials for hydrogen storage, spanning from conventional forms to cutting-edge nanoarchitectures. We elucidate the intricate relationships between synthesis methods, material properties, and hydrogen storage performance through advanced characterization techniques and mechanistic studies. The review spotlights innovative modification strategies, including heteroatom doping, hierarchical structuring, and composite formation, which push the boundaries of storage capacity and kinetics. By synthesizing insights from materials science, physical chemistry, and engineering, we provide a roadmap for overcoming current limitations in carbon-based hydrogen storage materials. The potential applications across transportation, stationary power, and portable electronics are evaluated, contextualizing carbon-based storage within the broader clean energy landscape. This analysis offers a forward-looking perspective on research directions poised to yield transformative breakthroughs, accelerating the realization of practical carbon-based hydrogen storage solutions for a sustainable energy future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.