Abstract

In this paper, a direct switching between a transparent (or reflecting) planar (P) state to an opaque (or transparent) focal conic (FC) state and vice-versa of a polymer free bistable cholesteric light shutter without any homogeneous polyimide (PI) layer, is demonstrated based on the sign inversion of dielectric anisotropy of dual frequency liquid crystal (DFLC). The direct switching was achieved by applying square wave field at low (1 kHz) and high (50 kHz) frequency. As a result, the DFLC light shutter sustains bistable bright and dark states in electric field off state and exhibits excellent electro-optic performance. The direct switching from the FC to P states not only supports more uniform P state but also significantly reduces switching voltage by eliminating the high field homeotropic (H) state required for the switching in the conventional polymer stabilized cholesteric texture (PSCT) light shutter. The driving voltage applied to make a transition from the P to FC one is relatively low (3Vp-p/µm). Further, switching time from FC to P state was reduced drastically with homeotropic PI layer. Results show that dual frequency cholesteric liquid crystal (DFCLC) light shutter holds a great promise for use in energy efficient display devices and switchable windows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.