Abstract

A heat pipe (HP) is a passive heat transfer device able to transmit heat a few meters or several hundred meters away from the heat source without use of external energy. This paper presents a critical review of the HP technologies. It is found that the heat transfer performance of a HP is highly dependent upon its geometrical and operational conditions, whilst the existing computerized analytical and numerical models for the HP require a huge number of parametrical data inputs, and therefore is extremely time-consuming and impractical. Furthermore, the measurement results of the HPs vary time by time and show certain disagreement with the simulation prediction, giving a high uncertainty in characterisation of the HP. Development of a machine learning algorithm and associated models based on the structured HP database is a solution to tackle these challenges, which is able to provide the dimensionless and multiple-factors-considering solution for HP structural optimization and performance prediction. A review on big-date/machine-learning technology for HP application was undertaken, indicating that a database covering the HP parametrical data, operational variables and associated performance results has not yet been established. Challenges for the HP structural optimization and performance prediction using the big-data-trained machine learning technology lie in: (1) complex and unregulated HP data; (2) unidentified analytic algorithm for HP structural optimization; and (3) unidentified data-driven algorithm for HP performance prediction. This review-based study provides the potential future research directions for development of the big-data-trained machine learning technology for HP structural optimization and performance prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call