Abstract
Fuzzy Bayesian networks (FBNs) are the variant of standard/classical Bayesian networks (BNs), which have intrinsic capability of handling ambiguity due to lack of expert knowledge and eventually reduces the epistemic uncertainty when used as computational models. Of late, FBNs have gained substantial research interest to be applied for time series prediction in both non-spatial and spatial domains . This chapter discusses a number of fuzzy BN models that have recently been proposed in literature. The central attention is paid on how the discrete Bayesian analysis in the previously discussed enhanced BN models can be further improved through incorporated fuzziness so as to make them more realistic for dealing with various contexts of spatial time series prediction. A comparative study, at the end of the chapter, demonstrates superiority of the fuzzified enhanced BN models, compared to those having no incorporated fuzziness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.