Abstract

Recently, wireless body area network (WBAN) becomes a hot research topic in the advanced healthcare system. The WBAN plays a vital role in monitoring the physiological parameters of the human body with sensors. The sensors are small in size, and it has a small-sized battery with limited life. Hence, the energy is limited in the multi-hop routing process. The patient data is collected by the sensor, and the data are transmitted with high energy consumption. It causes failure in the data transmission path. To avoid this, the data transmission process should be optimized. This paper presents an advanced authentication and energy-efficient routing protocol (AAERP) for optimal routing paths in WBAN. Patients’ data are aggregated from the WBAN through the IoMT devices in the initial stage. To secure the patient’s private data, a hybrid mechanism of the elliptic curve cryptosystem (ECC) and Paillier cryptosystem is proposed for the data encryption process. Data security is improved by authenticating the data before transmission using an encryption algorithm. Before the routing process, the data encryption approach converts the original plain text data into ciphertext data. This encryption approach assists in avoiding intrusions in the network system. The encrypted data are optimally routed with the help of the teamwork optimization algorithm (TOA) approach. The optimal path selection using this optimization technique improves the effectiveness and robustness of the system. The experimental setup is performed by using Python software. The efficacy of the proposed model is evaluated by solving parameters like network lifetime, network throughput, residual energy, success rate, number of packets received, number of packets sent, and number of packets dropped. The performance of the proposed model is measured by comparing the obtained results with several existing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.