Abstract
Today, rapid digitization requires efficient bilingual non-image and image document classification systems. Although many bilingual NLP and image-based systems provide solutions for real-world problems, they primarily focus on text extraction, identification, and recognition tasks with limited document types. This article discusses a journey of these systems and provides an overview of their methods, feature extraction techniques, document sets, classifiers, and accuracy for English-Hindi and other language pairs. The gaps found lead toward the idea of a generic and integrated bilingual English-Hindi document classification system, which classifies heterogeneous documents using a dual class feeder and two character corpora. Its non-image and image modules include pre- and post-processing stages and pre-and post-segmentation stages to classify documents into predefined classes. This article discusses many real-life applications on societal and commercial issues. The analytical results show important findings of existing and proposed systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Metaheuristic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.