Abstract

Advanced methods of analysis have shown promise in providing economical building structures through accurate evaluation of inelastic structural response. One method of advanced analysis is the plastic zone (distributed plasticity) method. Plastic zone analysis often has been deemed impractical due to computational expense. The purpose of this article is to illustrate applications of plastic zone analysis on large steel frames using advanced computational methods. To this end, a plastic zone analysis algorithm capable of using parallel processing and vector computation is discussed. Applicable measures for evaluating program speedup and efficiency on a Cray Y‐MP C90 multiprocessor supercomputer are described. Program performance (speedup and efficiency) for parallel and vector processing is evaluated. Nonlinear response including postcritical branches of three large‐scale fully restrained and partially restrained steel frameworks is computed using the proposed method. The results of the study indicate that advanced analysis of practical steel frames can be accomplished using plastic zone analysis methods and alternate computational strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.