Abstract

Catastrophic failure of a tailings dam at an iron ore mine complex in Brumadinho, Brazil, on 25th January 2019 released 11.7 million m3 of tailings downstream. Although reportedly monitored using an array of geotechnical techniques, the collapse occurred without any apparent warning. It claimed more than 200 lives and caused considerable environmental damage. Here we present the Intermittent Small Baseline Subset (ISBAS) technique on satellite-based interferometric synthetic aperture radar (InSAR) data to assess the course of events. We find that parts of the dam wall and tailings were experiencing deformation not consistent with consolidation settlement preceding the collapse. Furthermore, we show that the timing of the dam collapse would have been foreseeable based on this observed precursory deformation. We conclude that satellite-based monitoring techniques may help mitigate similar catastrophes in the future.

Highlights

  • Catastrophic failure of a tailings dam at an iron ore mine complex in Brumadinho, Brazil, on 25th January 2019 released 11.7 million m3 of tailings downstream

  • With direct access to the monitoring data not readily available, we studied ground surface displacements over Dam I in the 17 months preceding the collapse using satellite interferometric synthetic aperture radar (InSAR)

  • The ability to effectively detect precursory accelerating displacements in these cases could have been limited by a lack of measurements and degraded accuracy over the vegetated dam surface, as is common for many conventional InSAR techniques owing to poor coherence[11,12]

Read more

Summary

Introduction

Catastrophic failure of a tailings dam at an iron ore mine complex in Brumadinho, Brazil, on 25th January 2019 released 11.7 million m3 of tailings downstream. Data from both tracks indicate widespread ground surface displacements across the dry, vegetated tailings beach behind the dam wall for the period 2017–2019 (Fig. 1); this deformation is not adequately detected using a conventional Small Baseline Subset (SBAS) approach (Supplementary Fig. 2), which provides only 3.3% coverage of the entire dam structure compared with 99.5% using ISBAS.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.