Abstract

Calcium signalling in endothelial cells of resistance arteries is integral to blood flow regulation. Oxidative stress and endothelial dysfunction can prevail during advanced age and we questioned how calcium signalling may be affected. Intact endothelium was freshly isolated from superior epigastric arteries of Young (∼4months) and Old (∼24months) male C57BL/6 mice. Under resting conditions, with no difference in intracellular calcium levels, hydrogen peroxide (H2 O2 ) availability was ∼1/3 greater in endothelium of Old mice while vascular catalase activity was reduced by nearly half. Compared to Old, imposing oxidative stress (200μm H2 O2 ) for 20min increased intracellular calcium to 4-fold greater levels in endothelium of Young in conjunction with twice the calcium influx. Prolonged (60min) exposure to H2 O2 induced 7-fold greater cell death in endothelium of Young. Microvascular adaptation to advanced age may protect endothelial cells during elevated oxidative stress to preserve functional viability of the intima. Endothelial cell Ca(2+) signalling is integral to blood flow control in the resistance vasculature yet little is known of how its regulation may be affected by advancing age. We tested the hypothesis that advanced age protects microvascular endothelium by attenuating aberrant Ca(2+) signalling during oxidative stress. Intact endothelial tubes (width, ∼60μm; length, ∼1000μm) were isolated from superior epigastric arteries of Young (3-4months) and Old (24-26months) male C57BL/6 mice and loaded with Fura-2 dye to monitor [Ca(2+) ]i . At rest there was no difference in [Ca(2+) ]i between age groups. Compared to Young, the [Ca(2+) ]i response to maximal stimulation with acetylcholine (3μm, 2min) was ∼25% greater in Old, confirming signalling integrity with advanced age. Basal H2 O2 availability was ∼33% greater in Old while vascular catalase activity was reduced by half. Transient exposure to elevated H2 O2 (200μm, 20min) progressively increased [Ca(2+) ]i to ∼4-fold greater levels in endothelium of Young versus Old. With no difference between age groups at rest, Mn(2+) quench of Fura-2 fluorescence revealed 2-fold greater Ca(2+) influx in Young during elevated H2 O2 ; this effect was attenuated by ∼75% using ruthenium red (5μm) as a broad-spectrum inhibitor of transient receptor potential channels. Prolonged exposure to H2 O2 (200μm, 60min) induced ∼7-fold greater cell death in endothelium of Young versus Old. Thus, microvascular endothelium can adapt to advanced age by reducing Ca(2+) influx during elevated oxidative stress. Protection from cell death during oxidative stress will sustain endothelial integrity during ageing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call