Abstract

Acoustic microimaging (AMI) has been widely used to nondestructively evaluate microelectronic packages for the presence of internal defects. To detect defects in small devices such as /spl mu/BGA, flip-chip, and chip-scale packages, high acoustic frequencies are required for the conventional AMI systems. The acoustic frequency used in practice, however, is limited by its penetration through materials. In this paper, a novel acoustic microimaging technique, which utilizes nonlinear signal processing techniques to improve the resolution and robustness of conventional AMI, is proposed and investigated. The technique is based on the concept of sparse signal representations in overcomplete time-frequency dictionaries. Simulation and experimental results show its super resolution and high robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.