Abstract

This paper reported a micro flow cytometer capable of high-throughput characterization of single-cell electrical and structural features based on constrictional microchannels and deep neural networks. When single cells traveled through microchannels with constricted cross-sectional areas, they effectively blocked concentrated electric field lines, producing large impedance variations. Meanwhile, the traveling cells were confined within the cross-sectional areas of the constrictional microchannels, enabling the capture of high-quality images without losing focuses. Then single-cell features from impedance profiles and optical images were extracted from customized recurrent and convolution networks (RNN and CNN), which were further fused for cell-type classification based on support vector machines (SVM). As a demonstration, two leukemia cell lines (e.g., HL60 vs. Jurkat) were analyzed, producing high-classification accuracies of 99.3% based on electrical features extracted from Long Short-Term Memory (LSTM) of RNN, 96.7% based on structural features extracted from Resnet18 of CNN and 100.0% based on combined features enabled by SVM. The microfluidic flow cytometry developed in this study may provide a new perspective for the field of single-cell analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.